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Figure 1. PlatoNeRF. We propose PlatoNeRF: a method to recover scene geometry from a single view using two-bounce signals captured
by a single-photon lidar. (a) A laser illuminates a scene point, which diffusely reflects light in all directions. The reflected light illuminates
the rest of the scene and casts shadows. Light that returns to the lidar sensor provides information about the visible scene, and cast shadows
provide information about occluded portions of the scene. (b) The lidar sensor captures 3D time-of-flight images. (c) By aggregating several
such images (by scanning the position of the laser), we are able to reconstruct the entire 3D scene geometry with volumetric rendering.

Abstract

3D reconstruction from a single-view is challenging because
of the ambiguity from monocular cues and lack of informa-
tion about occluded regions. Neural radiance fields (NeRF),
while popular for view synthesis and 3D reconstruction,
are typically reliant on multi-view images. Existing meth-
ods for single-view 3D reconstruction with NeRF rely on
either data priors to hallucinate views of occluded regions,
which may not be physically accurate, or shadows observed
by RGB cameras, which are difficult to detect in ambient
light and low albedo backgrounds. We propose using time-of-
flight data captured by a single-photon avalanche diode to
overcome these limitations. Our method models two-bounce
optical paths with NeRF, using lidar transient data for su-
pervision. By leveraging the advantages of both NeRF and
two-bounce light measured by lidar, we demonstrate that
we can reconstruct visible and occluded geometry without
data priors or reliance on controlled ambient lighting or
scene albedo. In addition, we demonstrate improved gen-
eralization under practical constraints on sensor spatial-
and temporal-resolution. We believe our method is a promis-
ing direction as single-photon lidars become ubiquitous on
consumer devices, such as phones, tablets, and headsets.

PlatoNeRF is named after the allegory of Plato’s Cave, in which reality is
discerned from shadows cast on a cave wall.
* Equal contribution.

1. Introduction

Recovering 3D scene geometry from a single-view is critical
for many applications, ranging from autonomous vehicles
(AV) to extended reality (XR). Consider playing a game of
catch with a virtual ball in XR: if the ball drops and bounces
behind your couch, it should bounce out in a physically
realistic manner, dependent on the occluded geometry. Main-
taining a complete and up-to-date scan of the scene is tedious
for XR users and infeasible in many other applications, such
as robotics and AV. Thus, methods are needed that recover
geometry from single or few views; we address the former.

While neural radiance fields (NeRF) [26] are a popular
representation for scene geometry, single-view 3D recon-
struction with NeRF is challenging and remains an open
problem. Existing methods in single-view 3D reconstruction
with NeRF either rely on data priors [9, 21, 44, 48] or use vi-
sual cues, such as shadows, to infer occluded geometry from
a single view [19, 20, 40, 46]. Approaches such as diffusion,
generative adversarial networks, and transformers rely on
data priors to exploit correlations between observations and
a large corpus of training data. As a result, these methods
are known to hallucinate content which, while statistically
likely, may not be physically accurate. Other methods use
shadows to infer occluded geometry when training NeRF
[19, 20, 40, 46]. However, these methods struggle when the
shadow is difficult to detect, such as in ambient light or low
albedo backgrounds. In addition, these methods typically
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predict relative depth, rather than absolute depth, which is
important for many applications. To overcome these limita-
tions, while still enabling physically-accurate reconstruction,
we propose using two-bounce light measured with lidar.

Single-photon lidar systems, implemented with single-
photon avalanche diodes (SPADs), offer an opportunity for
accurate single-view 3D reconstruction. Lidar systems typi-
cally emit light into the scene and measure the time of flight
(ToF) of the light to return to the sensor. As illustrated in
Figure 1a, this light reflects off the scene multiple times —
we refer to each reflection as a “bounce”. While traditional
lidar systems only exploit the first bounce of light from the
scene back to the sensor, providing accurate absolute depth,
recent work has shown that two-bounce time of flight, i.e.
the time it takes for light to reflect off the scene two times
before returning to the sensor, can enable reconstruction of
occluded objects [7]. While promising, a limitation of ex-
isting methods is generalization to the lower spatial- and
temporal-resolutions of lidars found on consumer devices.

Our method, called PlatoNeRF, addresses the limitations
of single-view NeRF with two-bounce lidar and the limita-
tions of two-bounce lidar with NeRF. The goal of PlatoNeRF
is to reconstruct visible and occluded geometry from a single
view using ToF measurements of two-bounce light from a
single-photon lidar. Like Henley et al. [7], we illuminate
individual points in the scene with a pulsed laser. Light is
reflected off the illuminated points onto the rest of the scene
before reflecting to the sensor. This light, referred to as two-
bounce light, contains information about both scene depth
and the presence of shadows created by the laser. Our ex-
perimental setup is described further in Section 3.1. Using
the ToF measurements from multiple illumination points,
we train NeRF to reconstruct the two-bounce ToF by mod-
eling two-bounce optical paths. The presence or absence of
two-bounce light reveals shadows, which allow occluded ge-
ometry to be inferred, and its ToF reveals depth. Our method
is able to reconstruct 3D geometry with higher accuracy than
existing single-view NeRF or lidar methods. Furthermore,
using lidar allows our method to operate with higher ambient
light and lower scene albedo than RGB methods that exploit
shadows. We also demonstrate our method better generalizes
to lower spatial- and temporal-resolutions than existing lidar
methods due to our use of an implicit representation.

To summarize, our contributions are:
1. Two-Bounce Lidar NeRF Model: We propose a method

to learn 3D geometry by modeling two-bounce light paths
and supervising NeRF with lidar transients.

2. Single-View 3D Reconstruction: We demonstrate that
our method is able to accurately reconstruct scenes from
a single-view without hallucinating details of the scene.

3. Analysis: We study our method’s robustness to ambient
light, scene albedo, and spatial- and temporal-resolution.
In addition, we prepare a dataset of simulated scenes

captured with a single-photon lidar. We use this data to
evaluate our method and our baselines. Simulating such data
is challenging and requires domain expertise. To lower the
barrier to entry for machine learning with single-photon
lidars and to drive future research in this direction, we will
release this dataset upon publication.

Scope of this Work. Our work focuses on reconstruction
of Lambertian scenes and we leave non-Lambertian scenes
as future work. In addition, we focus on indoor scenes where
there are multiple surfaces to reflect light. We assume laser
scanning rather than flash illumination.

2. Related Work
Single-View Reconstruction. Single-view reconstruction
is an ill-posed problem due to missing constraints. To address
this, data-driven methods [11, 45, 47] hallucinate the invisi-
ble regions using learned 2D or 3D priors. Recently, inspired
by the success of diffusion models in generation [8, 38],
several methods explore distilling 3D correspondences from
pretrained 2D text-to-image models [18, 32, 42, 43]. Others
learn 3D priors to produce multi-view-consistent outputs
conditioned on the input view [9, 21, 33]. While these meth-
ods can generate realistic images, they are unable to ensure
physically accurate reconstruction of occluded regions with-
out geometric cues, which is the focus of our work.

Neural Shape from Shadow. Shape from shadows (SfS)
provides a physically-accurate way to infer occluded geome-
try based on the shadows it casts. While traditional methods
use shadowgrams, space carving, and probablistic methods
to infer SfS [17, 24, 34], in recent years, NeRF has been
shown to be an effective representation for learning SfS
[14, 19, 20, 40, 46]. These methods leverage volumetric
rendering to reconstruct the object or scene based on the
observation that pixels in shadow result from geometry be-
tween the shadowed point and the light source. However, the
performance of these methods degrades when the shadow be-
comes invisible — either due to ambient light or low albedo
backgrounds. In contrast, our method, while still relying on
shadows to reconstruct occluded areas, is robust to these
effects due to our use of lidar rather than RGB sensors.

3D Reconstruction with Single-Photon Lidars. Single-
photon lidars record time-correlated light intensity and have
been widely used for 3D reconstruction. We consider the
most common type in our work: single-photon avalanche
diodies (SPADs). SPAD-based methods often actively illumi-
nate the scene and record the number of photons arriving at
the sensor over time to infer scene geometry. Either visible
or non-visible, e.g. near infrared, wavelengths of light can
be emitted and detected. Each bounce of light in the scene
reveals information about the scene’s geometry. First-bounce
light encodes scene depth [3, 13], while third-bounce light
encodes partial information about the geometry of objects
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Figure 2. Problem Definition. We use a lidar system containing
a SPAD at position xs and a pulsed laser at position xl. The
SPAD view is kept constant, while the laser sequentially illu-
minates different points in the scene, {l1, ..., lK}. For each illu-
mination spot, we measure the time of flight for light to travel

xl
d1−→ l

d2−→ xp
d3−→ xs, shown by the captured transient.

that are outside the sensor’s line of sight, e.g. around corners
[16, 41]. NeRF has been used to exploit one- [1, 10, 23, 39]
and three-bounce [5, 27, 35] light in lidar/ToF. We focus on
two-bounce time of flight, which has recently been shown to
encode the geometry of occluded objects [6, 7, 37]. Henley
et al. [7] propose a two-step approach, first estimating scene
depth from two-bounce returns, and then occluded geometry
based on shadows inferred from the presence or absence
of two-bounce returns. Inspired by this work, we propose a
single, unified pipeline with NeRF to reconstruct both proper-
ties. Our work has three main benefits over [7]: (1) a unified
approach for both visible and hidden geometry, (2) smoother
scene reconstruction, and (3) better generalization to lower
spatial (e.g. 32×32) and temporal resolution regimes, which
are key limitations on consumer devices [25].

3. NeRF from Single-View Two-Bounce Lidar
In this section, we outline a method to extract 3D geom-
etry from two-bounce transient measurements with NeRF.
In Section 3.1, we describe the experimental setup, image
formation model, and two-bounce transients. In Section 3.2,
we describe how NeRF is trained with supervision from two-
bounce transients. In Section 3.3, we provide implementation
details that enable replication of our method and results.

3.1. Notations and Problem Definition

Experimental Setup. Our experimental setup is shown
in Figure 2. The lidar system consists of a SPAD sensor
and pulsed laser at known positions xs and xl respectively.
The laser sequentially points at K different points A =
{l1, ..., lK}. For each illumination point lk, an image ik

is captured, resulting in a set of K image captures I =
{i1, ..., iK}, as illustrated in Figure 1.
One-Bounce vs. Two-Bounce Light. SPAD sensors are
able to infer properties of a scene by measuring light that has
interacted with the scene. In this problem, we are interested
in inferring 3D scene geometry from one-bounce and two-
bounce light, where “bounce” denotes the number of times
light reflects off a scene surface. In Figure 2, light that travels
along the path xl → l → xs is one-bounce light because
it undergoes one reflection at l. Similarly, light that travels
along the path xl → l → xp → xs is referred to as two-
bounce light because it undergoes two reflections at l and
xp. We refer to each illumination point l as a virtual source
because it acts as a point light source. Similarly, we define
xp as a virtual detector because it refers to the scene point
that is observing light from l. In measurement ik, the pixel
observing scene point lk measures one-bounce signal, and
all other pixels (e.g. xp) measure two-bounce signals or
shadows. In general, one-bounce light arrives at the sensor
earlier in time because it travels a shorter optical pathlength.
One-bounce light also generally has higher intensity because
light intensity is attenuated after every surface reflection.
Transient Measurement. Each image i ∈ RNu×Nv×Nt is
a transient measurement, where Nu and Nv represent the
spatial resolution and Nt denotes the number of timing bins.
A transient i(u, v, t) measures the amount of light arriving
at every pixel (u, v) at a given time t. A pixel measurement
i(u, v, :) measures a histogram of light intensity as a func-
tion of time. Each bin of the histogram is discretized to a
timing resolution, or bin width, of tres. For our experiments,
we choose tres = 128 ps, meaning that we can resolve the
pathlength of light up to a precision of 3.8 cm. An example
histogram two-bounce signal is plotted in Figure 2. The loca-
tion of the two-bounce peak tpeak in the histogram is directly
correlated to the pathlength d that the light travels via the
following equation

tpeak =
d

c
=

d1 + d2 + d3
c

(1)

=
∥xl − l∥2 + ∥l− xp∥2 + ∥xp − xs∥2

c
, (2)

where c ≈ 3 · 108 m/s is the speed of light, d1 corresponds
to the distance between the laser xl and the virtual source l,
d2 is the distance between the virtual source l and virtual de-
tector xp, and d3 is the distance between the virtual detector
xp and sensor xs, as shown in Figure 2.
Shadow Measurement. Equation 2 assumes that a direct
path exists between xp and l. However, if xp lies in shadow,
no two-bounce signal will be measured (i.e., no pulse will be
observed). xp is defined to lie in shadow if an opaque object
lies along the ray connecting l and xp. Because l is modeled
as a point light source, we neglect any diffraction effects and
soft shadows that are common with area sources.
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Figure 3. Method. PlatoNeRF learns 3D scene geometry from single-view two-bounce lidar time of flight, modeled with NeRF. Our method
consists of three steps. (a) First, we render primary rays from the camera to the scene (Section 3.2.1). (b) Second, we model rays that scatter
and travel to the virtual light (the point where light rays first hit the scene) (Section 3.2.2). Both steps are supervised with transients measured
by a single-photon lidar. (c) Third, we find that reconstructing the two-bounce time of flight enables 3D reconstruction (Section 3.2.3).

Problem Statement. The resulting transient measure-
ments will contain information about one-bounce signals,
two-bounce signals, and shadows. The one-bounce and two-
bounce signals provide information about objects that are
visible to the sensor, and the shadows provide information
about occluded portions of the scene. Using these measure-
ments, we will reconstruct the 3D geometry of visible and
occluded portions of the scene. Note that although we cap-
ture N measurements, the measurements are captured from
the same view with only the laser being scanned.

3.2. Two-Bounce Volumetric Lidar Rendering

We parameterize our scene as a neural radiance field (NeRF).
The MLP fθ : R3 → R predicts a volume density σ for
every input 3D scene point x = (x, y, z). The 3D geometry
of the scene can then directly be estimated from σ(x). The
goal of this subsection is to synthesize transient images by
developing a renderer that can map densities σ to predicted
transients î. These synthesized transient measurements can
then be used to train the NeRF in an analysis-by-synthesis
framework. Note that, unlike a vanilla NeRF, we are not com-
puting radiance, because we only reconstruct 3D geometry,
not texture. Our method is summarized in Figure 3.

To render two-bounce transients, we must render along
two types of rays: (1) primary rays and (2) secondary rays.
Primary rays are defined as rp(λ) = op + λdp, where op =
xs and dp is determined by the camera matrix. Secondary
rays are defined as rs(λ) = os + λds, where os = xp and
ds = (l − xp)/|l − xp|. We assume that the position of
l is known by using standard time-of-flight techniques [4].
Consistent with NeRF literature, all equations are expressed
with respect to a single pixel measurement.

3.2.1 Rendering Primary Rays

The goal of rendering along the primary ray is to compute
the two-bounce time-of-flight tpeak = d/c by determining
the depth d3 of xp. Once the location of xp is known, d1 and
d2 can subsequently be computed because l, xs, and xl are

already known (Equation 2). First, the MLP is queried at P
sampled points along the primary ray rp between the near
plane and far plane to output densities σ1, ..., σP . The depth
along the ray can be computed from the densities as

d̂3(rp) =

N∑
i=1

Tiαiti (3)

where Ti =

i−1∏
j=1

(
1− αj

)
and αi =

(
1− e−σiδi

)
, (4)

where δi = ti− ti−1 is the distance between two samples
along a ray. This equation can be interpreted as a discretized
expectation integral, where the product Tiαi is the probabil-
ity that the ray terminates exactly at ti (i.e. d3 = ti). Ti is
the transmittance a distance ti along the ray and models the
probability that the ray is not terminated before arriving at
ti. αi denotes the probability of the ray terminating at ti and
is commonly used in graphics for alpha compositing.

3.2.2 Rendering Secondary Rays

The goal of rendering secondary rays is to determine if xp

lies in shadow or not. Every primary ray has a correspond-
ing secondary ray, which is determined by (1) computing
the depth d3 along the primary ray and (2) connecting the
estimated xp to the virtual light source l. The secondary
ray connects the virtual source l and the virtual detector xp.
Intuitively, if xp lies in shadow, density along the secondary
ray will be high. Otherwise, the density will remain low. The
probability that xp does not lie in shadow is

pshadow =

N−1∏
j=1

(
1− αj

)
. (5)

The product integral is effectively the transmittance along
the secondary ray, where a low transmittance indicates xp

lies in shadow. Note that, unlike the primary rays, the near
and far planes of the secondary rays are known; the near
plane is defined as λn = 0 and the far plane as λf = d2,
enabling these rays to be rendered more efficiently.
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3.2.3 Synthesizing Transient Measurements

Using the synthesized two-bounce time-of-flight and shadow
measurements, we can compute a loss based on the input
transient measurement. We assume that l, xs, and xl are
known. In addition, we assume that we have a binary mask
mk ∈ RNu×Nv for each measurement ik that segments
the transient image into shadowed and unshadowed pixels.
Details on how to compute these quantities using the raw
transient measurements are further explained in Section 3.3.

Distance Loss. The distance loss measures the accuracy
of the synthesized two-bounce time of flight. Recall that
rendering the primary ray enables estimation of the two-
bounce time of flight using Equation 2 and xp obtained from
Equation 3. The distance loss is expressed as

Lprimary = ∥tpeak − t̂peak∥22, (6)

where tpeak is the time of flight observed in the transient
measurement, and t̂peak is the two-bounce time-of-flight pre-
dicted by the NeRF rendering algorithm. Note that the dis-
tance loss is only computed on unshadowed pixels because a
two-bounce signal will not exist for a shadowed pixel. How-
ever, we would still be able to estimate scene depth for these
shadowed pixels because it is unlikely that the pixel will be
shadowed in all N images of I due to illumination diversity.

Shadow Loss. The shadow loss determines if xp is cor-
rectly classified as a shadowed or unshadowed pixel based
on the rendered value pshadow. The shadow loss is computed
using the output rendering from the secondary ray in Equa-
tion 5. The shadow loss is expressed as

Lsecondary = ∥s− p̂shadow∥22, (7)

where s ∈ {0, 1} is a binary value from mk indicating
whether the transient measurement observed a shadow at the
pixel. Unlike the distance loss, the shadow loss is computed
for all pixels, shadowed and unshadowed.

Combined Loss Function. The final loss function can be
expressed as a weighted sum of the distance and shadow loss

L = Lprimary + βLsecondary, (8)

where β is a hyperparameter. Once the MLP is trained on this
loss function, the predicted volume density can be extracted
by densely sampling 3D scene points and querying the MLP
at these points. The resulting densities can be used to render a
depth map from any viewpoint or to generate a 3D mesh with
marching cubes [22]. The loss, while simple in form, enables
reconstruction of both the visible and occluded scene using
only physically-based measurements, without data priors.

3.3. Implementation Details

Data Pre-Processing. Our method requires five inputs for
each pixel: (1) the sensor location op = xs and ray direction
dp, (2) laser location xl, (3) the distance from the laser to
the virtual source ∥l − xl∥, (4) two-bounce time of flight
tpeak, and (5) if the pixel is in shadow or not. (1) can be
computed using camera matrices and (2) is assumed to be
calibrated. We use signal processing to extract (3–5). We
compute time-of-flight by using a template of the laser pulse
shape as a match filter, and compute the cross-correlation
of the match filter with the histogram at every pixel. The
peak of the cross-correlation yields the time-of-flight at that
pixel, yielding (4), and the maximum value of the cross-
correlation yields the confidence that a pulse was measured.
We filter out one-bounce returns by finding rays that are
parallel or close to parallel to l, and setting the corresponding
histogram intensities to zero. Then, (5) can be computed by
thresholding the confidence map to yield the binary shadow
mask. (3) can be computed by determining the pixel with one-
bounce return and computing the distance as d1 = ct1B/2,
where t1B is one-bounce time-of-flight, since the laser and
sensor are roughly co-located in our experiments.

Training. For the first 25,000 iterations of training, β is set to
0. After 25,000 iterations, when an accurate initial estimate
of the virtual detector xp is obtained, we set β to 1/6,000
in most experiments to encourage Lprimary to continue to
improve after activating the shadow loss. The NeRF MLP is
queried twice for each primary ray, once with coarse samples
and once with fine samples, followed by coarse and fine
sampling along the secondary rays.

Implementation. PlatoNeRF is implemented in PyTorch
[28] and is built off of vanilla NeRF [26]. As in NeRF, we
use the Adam optimizer [15] and set an initial learning rate
of 5× 10−4, which decays exponentially over training.

4. Experiments
We validate our method on the task of 3D reconstruction
across several scenes. First, we introduce the simulated
datasets that we make available to accelerate future work in
learning-based methods for single-photon lidars. Then, we
share our results, comparisons, and ablations on spatial and
temporal resolution, ambient light, low-albedo backgrounds,
non-planar backgrounds, and number of illumination points.

4.1. Datasets

We validate our method on four simulated datasets and a real
dataset, each described below.

Simulated Datasets. We create datasets of four scenes of a
room with either a chair, bunny, dragon, or occluded bunny
in a chair, shown in Figure 4. The scenes are captured using a
time-of-flight extension of Mitsuba [12] created by Pediredla
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Table 1. Depth evaluation. We compare PlatoNeRF to both lidar- and RGB-based single-view 3D reconstruction methods, BF Lidar [7] and
S3-NeRF [46], respectively. Depth metrics are reported (in m for L1 and dB for PSNR) both for the train view and 120 novel test views.

Chair Scene Dragon Scene Bunny Scene Occlusion Scene
Train View Test Views Train View Test Views Train View Test Views Train View Test Views

Approach L1 Depth ↓ L1 Depth ↓ PSNR ↑ L1 Depth ↓ L1 Depth ↓ PSNR ↑ L1 Depth ↓ L1 Depth ↓ PSNR ↑ L1 Depth ↓ L1 Depth ↓ PSNR ↑
BF Lidar 0.0348 0.1837 19.63 0.0233 0.1049 22.58 0.0339 0.0660 25.16 0.0341 0.2151 18.96
S3–NeRF 0.0602 0.1178 22.80 0.0619 0.1042 25.06 0.0633 0.0877 27.67 0.0682 0.1336 22.51
PlatoNeRF 0.0222 0.0862 26.58 0.0186 0.0870 28.45 0.0191 0.0601 30.26 0.0185 0.0836 27.33

Figure 4. Qualitative Depth Results. We provide qualitative results
for predicted depth on both train and novel test views, comparing
our method, BF Lidar [7], and S3–NeRF [46] to the ground truth
across four scenes. Each method is trained from the one train view
shown and reconstructs the entire scene.

et al. [29]. For each scene, we heuristically choose N=16
points in the left and right parts of the scene, corresponding
to the left and right walls, to illuminate. For each point
that is illuminated, we record a transient image. Our scene is
measured using a 512×512 SPAD with a temporal resolution
of 128 ps (3.84 cm). Intensity is measured for 0.05µs (15 m)
per illumination spot, resulting in 391 timing bins per pixel.
We also render corresponding ground truth depth images
both from the training view and across 120 test views around
the scene for evaluation. Transient data, depth, and all sensor
and illumination parameters will be released.

Real Dataset. We use a dataset of single-photon lidar data
captured by Henley et al. [7] to validate our method out-
side of simulation. The dataset captures a simple indoor
scene, shown in Figure 5, containing a mannequin and box.
The scene is captured with a 200×200 pixel sensor with an

Table 2. Point Cloud Evaluation. We compute the Chamfer dis-
tance between the point clouds generated by each method. Metrics
are averaged over all four simulated scenes and std is reported.

Approach Chamfer (Mean)↓ Std.↓
BF Lidar 0.0465 0.0014
S3-NeRF 0.4129 0.0021
PlatoNeRF 0.0280 0.0014

instrument response function of 128 ps (full width at half
maximum). The scene is illuminated with 16 laser spots and
a per-pixel transient is captured for each laser spot.

4.2. Results

Baselines. We compare our work with two methods, one
that uses two-bounce lidar for single-view 3D reconstruction
without learning and one that uses shadows measured by an
RGB camera to train NeRF. We note that, to the best of our
knowledge, we are the first to model two-bounce lidar with
NeRF and so there are not direct comparisons for this task.
1. Bounce-Flash Lidar: Our work is inspired by Bounce-

Flash (BF) Lidar [7], which models two-bounce lidar
analytically to estimate visible depth and occluded ge-
ometry from a single view, using geometric constraints
and shadow carving [34], respectively. BF Lidar’s output
is one point cloud (PC) for visible and one for occluded
geometry, which we combine for our comparisons.

2. S3-NeRF [46] is a recent method for learning neural
scene representations using shadows. Using single-view
RGB images captured under varying illumination, it trains
a neural SDF model by exploiting shadow and shading
information. A sphere is initialized at the origin where
the object is assumed to be and known camera and light
positions are used to model the scene’s bidirectional
reflectance distribution function. S3-NeRF reconstructs
both the object casting shadows and all other background
scene geometry, making it a suitable comparison.

Metrics. We use L1 depth error to evaluate our method
for 3D reconstruction, as done in past work [14, 19, 46].
In addition, we also report PSNR on reconstructed depth
images. Since BF Lidar reconstructs a PC, we also include
metrics on Chamfer distance. To convert the BF Lidar PC to
depth for depth metrics, we increase the size of each point
and project the depth to the test view, taking the smallest
depth value along each ray. We find this produces better
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Figure 5. Real-World Results. (a) Captured scene (stars are illumi-
nation spots), (b) BF Lidar result, (c) PlatoNeRF result. Our method
achieves similar results as BF Lidar, with much fewer artifacts.

results than first converting to a mesh before rendering depth.

Simulated Results. Depth metrics for both the training view
and across 120 test views for both our method and the base-
line methods are reported in Table 1, and Chamfer distance
is reported in Table 2. We find that our method consistently
outperforms both BF Lidar and S3-NeRF across both sets
of metrics. Qualitative results are shown in Figure 4. Our
method is able to reconstruct the visible and occluded parts
of the scene, providing accurate scale and absolute depth.
Due to our use of an implicit representation, we achieve
much smoother results than BF Lidar. However, because our
method uses vanilla NeRF, there are small floaters visible in
some results. In contrast, S3-NeRF uses an SDF represen-
tation, reducing floaters, but resulting in overly smoothed
results, e.g. the dragon’s head.

Despite there being no two-bounce signal for any illu-
mination point in the area directly behind the object, both
PlatoNeRF and S3-NeRF interpolate in this area. Since BF
Lidar is not learning-based, the lack of two-bounce signal
in this area results in a hole. We do not include this area in
our depth metrics. We note that PlatoNeRF also accurately
extrapolates beyond the camera’s field of view, in parts of the
scene close to the camera. Finally, since RGB based shape
from shadow methods, such as S3-NeRF, produce relative
rather than absolute depth, we tried running iterative closest
point [2] on S3-NeRF’s unprojected depth map, but found it
does not improve S3-NeRF’s metrics. We also note that, as
in the original work, we train S3-NeRF with RGB images
rendered with only one bounce, as we found it does not con-
verge when trained on images rendered with multi-bounce.

Real-World Results. We show real-world results in Figure 5
and compare with BF Lidar. PlatoNeRF method achieves
competitive performance. While BF Lidar produces many
artifacts, especially near edges and specular areas on the man-
nequin, PlatoNeRF produces far fewer, despite not modeling
specular surfaces. In general, PlatoNeRF produces smoother
depth, but small floaters are noticeable, especially in the
nearby floor region, which is an area for future work.

4.3. Ablations

We ablate our method to understand how it is affected by
(1) reduced spatial and temporal resolution, (2) ambient

Table 3. Ablations on Lidar Sensor. Lidars on consumer devices
have lower spatial- and temporal-resolution than research-grade
lidars. We ablate the impact of these sensor parameters on our
method and BF lidar and find that our method is much more gener-
alizable due to the interpolation of our implicit representation.

Spatial Resolution
L1 Depth (m)

Downsample Ours BF Lidar
128× 128 0.0880 0.1236
64× 64 0.0932 0.1759
32× 32 0.1070 0.1799

Temporal Resolution
L1 Depth (m)

Upsample Ours BF Lidar
256 ps 0.0965 0.2802
512 ps 0.1210 0.3119

1024 ps 0.1833 0.3510

Table 4. Ablations on Scene Properties. We observe that RGB
methods that exploit shadows are sensitive to scene properties
that affect the visibility of the shadow, notably ambient light and
background albedo. We ablate our method with S3-NeRF as we
vary these properties and note that, while S3-NeRF is relatively
robust, PlatoNeRF is much more so due to our use of a lidar sensor.

Ambient Light
L1 Depth (m)

Intensity Ours S3–NeRF
0 0.0862 0.1178
4 0.0794 0.3080

Scene Albedo
L1 Depth (m)

Albedo Ours S3–NeRF
0× less 0.0862 0.1178
4× less 0.0859 0.2152

light, (3) background albedo, (4) non-planar surfaces, and
(5) number of illum. points. (1) is ablated in comparison
to BF Lidar to highlight the benefits of our method over
related lidar work. (2) and (3) are ablated in comparison to
S3-NeRF to highlight the fundamental advantages of using
lidar compared to RGB when measuring shadows. Finally,
(4) and (5) are done only on PlatoNeRF. All ablations are
done on the chair scene.

4.3.1 Spatial and Temporal Resolution

In comparison to research-grade lidars, lidars on consumer
devices have lower spatial and temporal resolution. We high-
light an advantage of PlatoNeRF over BF Lidar, which is
better generalization to low-resolution regimes due to our
implicit representation. Quantitative and qualitative results
are shown in Table 3 and Figure 6 (rows 1–2), respectively.

Spatial Resolution. To study spatial resolution, we down-
sample the number of pixels by four, eight, or sixteen, keep-
ing field of view the same. Resulting spatial resolutions are
128×128, 64×64, and 32×32. We find that BF Lidar’s accu-
racy degrades more significantly than PlatoNeRF since there
is no mechanism to interpolate across missing pixels. Even
at 32× 32 resolution, PlatoNeRF accurately reconstructs the
scene, albeit with slightly more artifacts. More in our supp.

Temporal Resolution. We increase the bin size of our
transients from 128 ps to 256 ps, 512 ps, and 1024 ps by
integrating the intensities within each bin, resulting in fewer
bins per transient, and thus less precise depth information.
We find that depth error for BF Lidar degrades more than
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PlatoNeRF. Surfaces predicted by BF Lidar become rough
and uneven due to ambiguity in the depth per pixel (see our
supplement). In contrast, while PlatoNeRF’s predicted depth
becomes less accurate as bin size increases, it maintains
smooth geometry and consistency between nearby pixels.

4.3.2 Ambient Light and Low Albedo Backgrounds

In real-world settings, there may be high ambient light or
low scene albedo, both of which make detection of shad-
ows in RGB images more challenging. In contrast, lidar-
based methods, such as PlatoNeRF, are fundamentally more
robust to these low signal-to-noise (SNR) and signal-to-
background (SBR) scenarios. While ambient light and low
albedo impact both RGB and lidar-based approaches, lidar-
based approaches can mitigate their impact with time- and
wavelength-gating. Ambient noise is uniformly distributed
over time. Time gating enables suppression of ambient noise
by only considering timing bins containing the pulse signal.
Wavelength gating enables suppression of ambient noise in
wavelengths not measured by the SPAD sensor, whereas
RGB sensors have broadband sensitivity to visible wave-
lengths. A detailed explanation of the gating principle is
provided in the supplement. Empirical results for these abla-
tions are reported in Table 4.

Ambient Light. Increasing the ambient light would in-
crease the background and noise in the SBR or SNR term.
We empirically validate that PlatoNeRF is able to handle am-
bient light in the scene, while S3-NeRF depth error increases.
For this experiment, we render the scene with an added area
light to train both methods. The area light intensity is the
same in both RGB and lidar rendering. We do not model
saturation or pileup distortion [30] effects, since these are
not significant in indoor environments. PlatoNeRF’s recon-
struction under ambient light is shown in Figure 6 (row 3)
and S3-NeRF’s is in the supplement.

Albedo. Reducing the albedo would reduce the signal in
the SNR and SBR term. However, unlike RGB sensors, scene
albedo has a minor effect on lidar. To show the impact of
albedo on PlatoNeRF and S3-NeRF, we reduce the albedo
of all background surfaces. While the shadow is still dis-
cernible to the human eye (see supplement), the lowered
albedo causes S3-NeRF’s depth error to increase, while Pla-
toNeRF is unaffected. S3-NeRF produces accurate depth
from the training view, but, in occluded regions, geometry is
missing due to the weaker shadows.

4.3.3 Other Ablations

Lastly, we study the impact of both non-planar background
geometry and number of illumination spots on PlatoNeRF
reconstructions. The qualitative results for both are shown in
Figure 6 (row 3). The non-planar scene consists of curved

Figure 6. Ablations. We study the impact of spatial and tempo-
ral resolution on PlatoNeRF, finding that the scene is well recon-
structed despite large degradation to both. While depth is visually
similar for different temporal resolutions, the error maps indicate
increasing displacement of the chair. The last row shows results for
non-planar walls, ambient light, and fewer illumination points.

walls on either side. PlatoNeRF’s depth L1 is 7.75 cm and
PSNR is 27.25 dB across test views, similar to previous
experiments. For our illumination spot ablation, we reduce
the number of illumination spots from 16 to 8, leading to L1
error of 9.12 cm and PSNR of 26.33 dB across test views, a
small drop from when all sixteen views are used. Varying
illumination spots are studied more in the supplement.

5. Conclusion
We present a method for reconstructing lidar measurements
with NeRF, which enables physically-accurate 3D geom-
etry to be learned from a single view. We illuminate the
scene with a pulsed laser and record the two-bounce time of
flight. This data is used to supervise NeRF, which is trained
to learn the optical path of two-bounce light. Our method
outperforms related work in single-view 3D reconstruction,
reconstructs scenes with fully occluded objects, and learns
metric depth from any view. Lastly, we demonstrate general-
ization to varying sensor parameters and scene properties.

Limitations. Our method has a couple limitations. First,
we only model Lambertian reflectance. Second, our method
is built on top of vanilla NeRF, and, as a result, occasionally
has floaters. However, our method is agnostic to the flavor
of NeRF and can be integrated into others in the future.

Future Work. We believe this research is a promising
direction as lidar becomes ubiquitous. Future directions en-
abled by PlatoNeRF include incorporating RGB and lidar
with neural rendering, incorporating data priors that are com-
monly used for single-view 3D reconstruction into PlatoN-
eRF, and modeling more than two-bounces of light.

Acknowledgements. We thank Akshat Dave for his paper
feedback and insights into time of flight imaging and we
thank Wenqi Yang for her guidance with S3-NeRF.
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PlatoNeRF: 3D Reconstruction in Plato’s Cave via Single-View Two-Bounce Lidar

Supplementary Material

A. Time & Wavelength Gating in Lidar
As described in the main text, PlatoNeRF (and lidar-based
methods) offer fundamental advantages over RGB-based
methods in practical scenarios with uncontrolled scene albe-
dos and ambient illumination. Lidars can leverage their pi-
cosecond timing resolution for time gating to enhance signal-
to-background ratio (SBR) of measured shadow images. In
addition, unlike RGB sensors, lidar sensors do not require
wideband spectral sensitivity. Therefore, ambient illumina-
tion that has different wavelength than that of the laser’s can
be suppressed using wavelength gating.

The principle of time gating is illustrated in Figure 7. A
measured lidar signal i(t) can be decomposed into the pulse
signal s(t) and (roughly) constant ambient background noise
n(t) = N . An RGB sensor would integrate over this timing
information and measure

i =

∫ T

0

i(t)dt =

∫ T

0

s(t) + n(t)dt (9)

=

∫ T

0

s(t)dt+NT, (10)

where T is the length of the transient signal. The measure-
ment i results in a SBR of

SBR =

∫ T

0
s2(t)dt

N2T
(11)

On the other hand, a lidar sensor would only use relevant
parts of the transient, i.e., around the signal peak. A time-
gated lidar would therefore measure

i =

∫ T2

T1

s(t)dt+NT, (12)

with SBRgated =

∫ T2

T1
s2(t)dt

N2W
, (13)

where T1 and T2 determine the gated window in the transient
signal and W = T2 − T1 is the window size. Note that the
numerator of Equation 11 is roughly the same as the SBR
in Equation 13 because s(t) ≈ 0 for t < T1 and t > T2, as
shown in Figure 7(a). Therefore, time gating offers an SNR
improvement of T

W over techniques that leverage RGB or
intensity signals. Note that the SBR enhancement is inversely
proportional to the gated window. We do not account for
Poisson noise effects, which, in practice, would introduce

trade-offs in determining the window size. Empirical results
are plotted in Figure 7(b)-(d) on the effects of time gating on
enhancing contrast in shadow images.

A similar idea can be applied to gate wavelengths. Most
of the signal will be concentrated within a narrow spectral
range, and all other intensities can be gated out with a narrow-
band pass filter, as shown in Figure 8. This figure plots the
emission spectra of an LED light [36] and the gating profile
is determined by a 685 nm PicoQuant pulsed laser [31].

B. Simulated Dataset Details

In this section, we describe the simulated datasets that we
render and use to compare our method to past work in more
detail. We render four simulated scenes, as described in the
main text, with both a lidar and RGB camera in Mitsuba [12].
The lidar data is used to run PlatoNeRF and Bounce Flash
(BF) Lidar [7] and the RGB data is used to run S3-NeRF
[46]. The same sixteen scene points are illuminated in both
the lidar and RGB data. In the lidar data, the sixteen points
are illuminated with a laser and, in the RGB data, point light
sources are placed at each of the sixteen points. A camera
to world transform from OpenGL (x right, y up, z back) to
Mitsuba (x left, y up, and z forward) is used to train each
method with this data. Ground truth depth for both the train
view and 120 test views are provided. A subset of the test
view frames are shown in the video results on the project
page. We plan to release all data for use in future work.

Lidar Data. The lidar (direct time of flight) data is ren-
dered at 512× 512 spatial resolution with a temporal reso-
lution (bin size) of 128 ps. We simulate a laser by using a
spot light source and setting the cutoff angle as 0.2 and the
beam width as 0.1. To choose the illumination points, we
randomly illuminate twenty four points in the scene and then
heuristically choose sixteen that maximize diversity.

RGB Data. To compare with S3-NeRF, we render each
scene with both lidar (to run our method) and RGB (to
run S3-NeRF) in Mitsuba. When rendering with RGB, we
compute the location of the scene point where the laser first
hits the scene and place a point light source at this location.
By placing point light sources at the same location as where
the laser hits the scene, we ensure the same shadows are cast
in the scene in both the lidar and RGB data. RGB images
are rendered with max depth to set to 2, ensuring only first-
bounce light is rendered, as required by S3-NeRF. Rendered
images are gamma corrected prior to training.
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Figure 7. Time Gating with Lidar. (a) A transient is plotted at a single pixel. Note that most of the signal (blue) is concentrated within a few
timing bins ∼ 20 ns. By only gating a window (green) around the signal, most of the noise profile (red) can be suppressed. (b)-(d) Measured
intensity images without time gating (b, c) and with time gating (d).

Figure 8. Wavelength Gating. Ambient illumination under an
LED light is compared to the spectral gating window needed for a
spectral window centered at 685 nm. Figure adapted from [36].

C. Training Details
Reproducibility. We will release all data, code, and model
checkpoints, along with documentation, prior to camera
ready to ensure our work is fully reproducible by others.
Code is provided in the ”code” folder of the supplement.
Simulated data is rendered in Mitsuba world coordinates and
PlatoNeRF uses OpenGL camera coordinates.

PlatoNeRF. We train our model for 200k iterations. For
the first 25k iterations, only the distance loss is applied,
while both the distance and shadow losses are applied there-
after. We use a threshold of 15% on the shadow confidence
map (computed as the maximum of the cross-correlation de-
scribed in Section 3.3) when extracting ground truth shadow
masks from the raw lidar measurements. This threshold is
used across all experiments, except the ambient light experi-
ment, where we further tune it.

Bounce Flash Lidar. Bounce Flash (BF) Lidar consists of
two steps: (1) estimating visible geometry via constraints on

Table 5. Ablations on Number of Illumination Points. We study
how varying the number of illumination points between two and
sixteen impacts PlatoNeRF reconstruction quality.

Illumination Spots
PlatoNeRF

# Spots L1 (m) PSNR (dB)
16 0.0862 26.58
8 0.0912 26.33
4 0.1347 25.15
2 0.2147 21.61

ellipsoidal geometry, and (2) estimating occluded geometry
with shadow carving. For each scene, we run a grid search
over thresholds for shadow extraction and occupancy proba-
bility (applied to the occupancy probabilities predicted from
shadow carving) to maximize BF Lidar accuracy.

S3-NeRF. We found the default training parameters pro-
vided for S3-NeRF work the best on our data. We only mod-
ify the light intensity parameter to match our rendered data
when training. When training with ambient light, we run a
grid search over the ambient light intensity (amb i) param-
eter to maximize S3-NeRF reconstruction quality, but find
that under a reasonably high ambient area light, S3-NeRF is
not able to reconstruct the scene regardless of this parameter.

D. Extended Ablations
In this section, we add further detail and discussion on the
results of our ablation, quantitatively reported in the main
text. In addition, we provide further ablation on the impact of
the number of illumination points on PlatoNeRF (Table 5).

D.1. Spatial- and Temporal-Resolution

Qualitative results comparing PlatoNeRF and Bounce Flash
(BF) Lidar under varying spatial- and temporal-resolutions
are shown in Figure 9. This ablation is important because
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Figure 9. Spatial- and Temporal-Resolution Ablation. We compare PlatoNeRF and Bounce Flash (BF) Lidar as spatial- and temporal-
resolution is reduced. PlatoNeRF continues to produce smooth geometry in both cases, whereas BF Lidar produces sparse geometry when
spatial resolution is reduced and bumpy geometry when temporal resolution is reduced, as highlighted in the area in the green boxes.

Figure 10. Ambient Light and Low Albedo Background Ab-
lation. We compare PlatoNeRF and S3-NeRF when trained on a
scene with either ambient light or a low albedo background. Pla-
toNeRF is robust to both, whereas the performance of S3-NeRF
degrades.

Figure 11. Illumination Point Ablation. We ablate the impact of
varying the number of illumination points between two and sixteen
on PlatoNeRF. While more illumination points improves recon-
struction quality, the chair’s geometry is still coarsely reconstructed
with just two illumination points.

lidars on consumer devices are often constrained to much
lower resolutions than research-grade lidars. Spatial resolu-
tion is varied by downsampling the number of pixels, while
keeping the field of view of the lidar the same. As spatial
resolution is reduced, geometry predicted by BF Lidar be-
comes sparser. The depth estimation of visible points in the
scene remains accurate, but there is no interpolation between
these points. The sparsity in visible depth information nega-
tively impacts the shadow carving step of BF Lidar, leading
to poor reconstruction of the chair in lower spatial resolu-
tion regimes. On the other hand, because PlatoNeRF is able
to smoothly interpolate across missing pixels, the resulting

reconstruction is significantly more accurate.
Temporal resolution is related to the bin size of the tran-

sient (i.e. the amount of time between each lidar measure-
ment). To increase the bin size and thus reduce the temporal
resolution of the lidar, we integrate intensities within the
bins. For example, when increasing bin size from 128 to 256
ps, we sum intensities for over every two bins. BF Lidar re-
sults maintain the shape of the chair (since shadow carving is
not significantly affected), but the visible geometry becomes
rough and bumpy since the supervision for the depth of each
visible pixel is less precise. On the other hand, PlatoNeRF
maintains smooth reconstructions.

D.2. Ambient Light

Qualitative results comparing PlatoNeRF and S3-NeRF re-
constructions under ambient light are shown in Figure 10
(top row). While S3-NeRF is able to model small amounts
of ambient light, it fails under realistic amounts of ambient
light, in this case, from an added area light. On the other
hand, PlatoNeRF is still able to accurately reconstruct the
scene with the same ambient light added.

D.3. Low-Albedo Backgrounds

Qualitative results comparing PlatoNeRF and S3-NeRF re-
constructions with a low albedo background are shown in
Figure 10 (bottom row). S3-NeRF is able to accurately re-
construct the visible portion of the scene, but is unable to
recover occluded geometry due to worse contrast in the
shadow (though it is still discernible to the human eye, as
shown in Figure 10). On the other hand, PlatoNeRF is not
significantly affected by scene albedo due to its use of a lidar
rather than RGB sensor.

D.4. Number of Illumination Points

We further ablate the impact of reducing the number of
illumination points used to train PlatoNeRF. In our main
experiments, we use sixteen illumination points. We reduce
that number to eight, four, and two and report the results
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in Table 5. Qualitative results are shown in Figure 11. The
scene is reconstructed for each number of illumination points,
however, as the number is reduced, quality also decreases, as
there is less information about occluded regions. When there
are only two illumination points, the occluded chair legs are
not reconstructed. We note that while we study the number of
illumination points, their location is also an important factor
in reconstruction quality. As the number of illumination
points is reduced, the location of the remaining illumination
points becomes increasingly important, i.e. casting shadows
with the most relevance and diversity. In these experiments,
we randomly choose which illumination points to use.
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